Energetics of the ionospheric feedback interaction

نویسندگان

  • Robert L. Lysak
  • Yan Song
چکیده

[1] The ionospheric feedback instability has been invoked as a possible mechanism for the formation of narrow auroral arcs. This instability can excite eigenmodes of both field line resonances and the ionospheric Alfvén resonator, producing narrow-scale structures. Although the basic dispersion relation of this instability has been discussed for both of these cases, the energetics of this instability has not been discussed quantitatively and questions remain as to the nonlinear evolution of this instability. The free energy for this instability comes from the reduction of Joule heating due to the preexisting convection caused by the self-consistent changes in ionization and conductivity due to Alfvénic perturbations on the ionosphere. In an active ionosphere, narrow-scale Alfvén waves can be overreflected; i.e., the reflected wave can have a larger amplitude than the incident wave, with the extra energy coming from a local reduction of Joule heating. Recombination produces a damping of this instability, particularly for high background conductivity, indicating that this instability operates best in a dark background ionosphere. This feedback interaction produces narrow-scale currents when strong gradients in the conductivity are produced, and effects from parallel resistivity or possibly kinetic effects will become important in its evolution. Theoretical constraints on low-spatial resolution observations of the energy dissipated by precipitation as opposed to Joule heating will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-low-frequency electrodynamics of the magnetosphere-ionosphere interaction

[1] The results presented in this paper provide an explanation for electromagnetic oscillations with frequencies much less than the fundamental eigenfrequency of the magnetosphere measured in the regions where the ionospheric conductivity is low and a small-amplitude, large-scale electric field in the ionosphere exists. This study is based on numerical simulations of a reduced two-fluid MHD mod...

متن کامل

Long-term Utilization of Interaction by Young EFL Learners: The Effects of Strategy Training

The bulk of research within the interactionist framework seems to be consensually pointing to the beneficial effects of interaction in SLA. However, few studies have investigated the role of training in providing and perceiving interactional feedback, especially among young learners. This study probed the effects of training prior to engagement in interaction in case of young learners acquiring...

متن کامل

Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement

  The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...

متن کامل

Investigation of the effects of geomagnetic storms on ionospheric irregularities using the combination of ground-based GNSS and SWARM satellites

Geomagnetic storms are one of the main causes of ionospheric perturbations in different sizes, depending on their intensity, which could disturb radio signals passing through this medium. On September 6-12, 2017, the sudden storm commencement (SSC) was the most massive geomagnetic storm of the year due to the X9 solar flare caused by a coronal mass ejection (CME). IMF-Bz and Dst values increase...

متن کامل

Variation of ionospheric slab thickness over South Africa

Ionospheric slab thickness is defined as the ratio of TEC to maximum electron density of the F-region (NmF2), proportional to the square of the F2-layer critical frequency (foF2). It is an important parameter in that it is linearly correlated with scale height of the ionosphere, which is related to electron density profile. It also reflects variation of the neutral temperature. Therefore, ionos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002